ASSIGNMENT-01
Relation between roots and coefficients of nth degree equations
Last Date of Submission: 02-05-2022, 23:59 Hours, Monday (in the Google classroom)

1. Solve the equation $3 x^{4}-40 x^{3}+130 x^{2}-120 x+27=0$, whose roots are in geometric progression.

$$
\text { Ans: } \frac{1}{3}, 1,3,9
$$

2. Solve the equation $x^{4}+15 x^{3}+70 x^{2}+120 x+64=0$, whose roots are in geometric progression.

$$
\text { Ans: }-1,-2,-4,-8
$$

3. Solve the equation $81 x^{3}-18 x^{2}-36 x+8=0$, whose roots are in harmonic progression.

$$
\text { Ans: } \frac{2}{9}, \frac{2}{3},-\frac{2}{3}
$$

4. If the roots of the equation $x^{3}-p x^{2}+q x-r=0$ be in harmonic progression, show that the mean root is $\frac{3 r}{q}$.
5. The equation $x^{4}-2 x^{3}+4 x^{2}+6 x-21=0$ has two roots equal in magnitude and opposite in sign, determine all the roots.

$$
\text { Ans: } \pm \sqrt{3}, 1 \pm \sqrt{-6}
$$

6. The equation $3 x^{4}-25 x^{3}+50 x^{2}-50 x+12=0$ has two roots whose product is 2 , find all the roots.

$$
\text { Ans: } 6, \frac{1}{3}, 1 \pm \sqrt{-1}
$$

7. Show that all the roots of the equation $x^{n}+p_{1} x^{n-1}+p_{2} x^{n-2}+\cdots+p_{n-1} x+p_{n}=0$ can be obtained when they are in arithmetic progression.
8. Find the condition which must be satisfied by the coefficients of the equation $x^{3}-p x^{2}+q x-r=0$, when two of its roots α, β are connected by a relation $\alpha+\beta=0$.

Ans: $p q-r=0$
09. Find the condition that the roots of the equation $x^{3}-p x^{2}+q x-r=0$ be in geometric progression.

$$
\text { Ans: } p^{3} r-q^{3}=0
$$

10. Find the condition that the roots of the equation $x^{3}-p x^{2}+q x-r=0$ be in harmonic progression.

Ans: $27 r^{2}-9 p q r+2 q^{3}=0$

