ASSIGNMENT-03
Rank and System of linear equations
Last Date of Submission: 12-07-2022, 23:59 Hours, Tuesday (in the Google classroom)

Rank of a Matrix

Suppose that $A_{m \times n}$ is reduced by row operations to an echelon form \mathbf{E}. The rank of matrix A is defined to be the number

$$
\begin{aligned}
\operatorname{rank}(\mathrm{A}) & =\text { number of pivots } \\
& =\text { number of non-zero rows in } \mathrm{E} \\
& =\text { number of basic columns in } \mathrm{A}
\end{aligned}
$$

Where basic columns of \mathbf{A} are defined to be those columns in A that contains the pivotal positions.

1. Reduce each of the following matrices into row echelon form, determine the rank and identify the basic columns.
(a) $\left(\begin{array}{llll}1 & 2 & 3 & 3 \\ 2 & 4 & 6 & 9 \\ 2 & 6 & 7 & 6\end{array}\right) \quad$ (b) $\left(\begin{array}{ccc}1 & 2 & 3 \\ 2 & 6 & 8 \\ 2 & 6 & 0 \\ 1 & 2 & 5 \\ 3 & 8 & 6\end{array}\right) \quad$ (c) $\left(\begin{array}{ccccccc}2 & 1 & 1 & 3 & 0 & 4 & 1 \\ 4 & 2 & 4 & 4 & 1 & 5 & 5 \\ 2 & 1 & 3 & 1 & 0 & 4 & 3 \\ 6 & 3 & 4 & 8 & 1 & 9 & 5 \\ 0 & 0 & 3 & -3 & 0 & 0 & 3 \\ 8 & 4 & 2 & 14 & 1 & 13 & 3\end{array}\right)$
2. Suppose that A is an $m \times n$ matrix. Give a short explanation of why each of the following statement is true?
(a) $\operatorname{rank}(\mathrm{A}) \leq \min \{\mathrm{m}, \mathrm{n}\}$
(b) $\operatorname{rank}(\mathrm{A})<\mathrm{m}$, if one row in A is entirely zero.
(c) $\operatorname{rank}(\mathrm{A})<\mathrm{m}$, if one row in A is a multiple of another row.
(d) $\operatorname{rank}(\mathrm{A})<\mathrm{m}$, if one row in A is a combination of other rows.
(e) $\operatorname{rank}(\mathrm{A})<\mathrm{n}$, if one column in A is entirely zero.
3. Determine which of the following systems are consistent and solve them.
$x+2 y+z=2$
(a) $2 x+4 y=2$
$3 x+6 y+z=4$
(b) $3 x+2 y+5 z=0$
$4 x+2 y+6 z=0$
(e) $\begin{aligned} & 2 w+x+3 y+5 z=1 \\ & 4 w+4 y+8 z=0 \\ & w+x+2 y+3 z=0 \\ & x+y+z=0\end{aligned}$
$x-y+z=1$
(d) $\begin{aligned} & x-y-z=2 \\ & x+y-z=3\end{aligned}$
$x+y+z=2$
$x-y+z=1$
$2 x+2 y+4 z=0$
(c) $\begin{aligned} x-y-z & =2 \\ x+y-z & =3 \\ x+y+z & =4\end{aligned}$
$2 w+x+3 y+5 z=7$
(f)
$4 w+4 y+8 z=8$
$w+x+2 y+3 z=5$
$x+y+z=3$
4. If A is an $m \times n$ matrix with $\operatorname{rank}(\mathrm{A})=\mathrm{m}$, explain why the system $[\mathrm{A} \mid \mathrm{b}]$ must be consistent for every right hand side b ?
5. Explain why the following homogeneous system has only trivial solutions.

$$
\begin{aligned}
& x_{1}+2 x_{2}+2 x_{3}=0 \\
& 2 x_{1}+5 x_{2}+7 x_{3}=0 \\
& 3 x_{1}+6 x_{2}+8 x_{3}=0
\end{aligned}
$$

6. Explain why the following homogeneous system has infinitely many solutions, and exhibit the general solution.

$$
\begin{aligned}
& x_{1}+2 x_{2}+2 x_{3}=0 \\
& 2 x_{1}+5 x_{2}+7 x_{3}=0 \\
& 3 x_{1}+6 x_{2}+6 x_{3}=0
\end{aligned}
$$

7. If A is the coefficient matrix for a homogeneous system consisting of four equations in eight unknowns and if there are five free variables, what is $\operatorname{rank}(\mathrm{A})$?
8. Suppose that A is the coefficient matrix for a homogeneous system of four equations in six unknowns and suppose that A has at least one non-zero row,
(a) Determine the fewest number of free variables that are possible.
(b) Determine the maximum number of free variables that are possible.
9. Explain why a homogeneous system of m equations in n unknowns where $m<n$ must always posses an infinite number of solutions.
10. Among the solutions that satisfy the set of linear equations

$$
\begin{aligned}
& \mathrm{x}_{1}+x_{2}+2 x_{3}+2 x_{4}+x_{5}=1 \\
& 2 x_{1}+2 x_{2}+4 x_{3}+4 x_{4}+3 x_{5}=1 \\
& 2 x_{1}+2 x_{2}+4 x_{3}+4 x_{4}+2 x_{5}=2 \\
& 3 x_{1}+5 x_{2}+8 x_{3}+6 x_{4}+5 x_{5}=3
\end{aligned}
$$

find all those that satisfy the following two constraints:

$$
\begin{aligned}
& \left(x_{1}-x_{2}\right)^{2}-4 x_{5}^{2}=0 \\
& x_{3}^{2}-x_{5}^{2}=0
\end{aligned}
$$

11. Consider the following system:

$$
\begin{aligned}
& 2 x+2 y+3 z=0 \\
& 4 x+8 y+12 z=-4 \\
& 6 x+2 y+\alpha z=4
\end{aligned}
$$

(a) Determine all the values of α for which the system is consistent.
(b) Determine the value of α for which there is a unique solution, and compute the solution for these cases.
(c) Determine all values of α for which there are infinitely many different solutions, and give the general solution for these cases.

