ASSIGNMENT-03

Rank and System of linear equations

Last Date of Submission: 12-07-2022, 23:59 Hours, Tuesday (in the Google classroom)

Rank of a Matrix

Suppose that $A_{m \times n}$ is reduced by row operations to an echelon form **E**. The rank of matrix A is defined to be the number

rank(A) = number of pivots

= number of non-zero rows in E

= number of basic columns in A

Where **basic columns of A** are defined to be those columns in A that contains the pivotal positions.

01. Reduce each of the following matrices into row echelon form, determine the rank and identify the basic

columns.

							(1	2	2)			(2)	1	1	3	0	4	1	
	,							Ζ	3			4	2	4	4	1	5	5	
	(1	2	3	3)			2	6	8			2	1	2	1	0	4	2	
(a)	2	4	6	9	(b)	2	6	0	(c)		1	3	1	0	4	3			
()	2	ć	7	ć		(-)		2	5		(-)	6	3	4	8	1	9	5	
	2	0	/	0)				Ζ	3			0	0	3	-3	0	0	3	
							(3	8	6)			0	1	۔ ۲	11	1	12	2	
												0)	4	Z	14	T	15	5)	

02. Suppose that A is an $m \times n$ matrix. Give a short explanation of why each of the following statement is true?

- (a) $rank(A) \le min\{m, n\}$
- (b) rank(A) < m, if one row in A is entirely zero.
- (c) rank(A) < m, if one row in A is a multiple of another row.
- (d) rank(A) < m, if one row in A is a combination of other rows.
- (e) rank(A) < n, if one column in A is entirely zero.

03. Determine which of the following systems are consistent and solve them.

x+2y+z=2(a) 2x+4y=23x+6y+z=4	2x + 2y + 4z = 0 (b) $3x + 2y + 5z = 0$ $4x + 2y + 6z = 0$	x - y + z = 1 (c) $x - y - z = 2$ $x + y - z = 3$ $x + y + z = 4$
x - y + z = 1	2w + x + 3y + 5z = 1	2w + x + 3y + 5z = 7
(d) $\begin{array}{c} x - y - z = 2 \\ x + y - z = 3 \end{array}$	(e) $w+x+2y+3z=0$ w+x+2y+3z=0	(f) $4w+4y+8z=8$ w+x+2y+3z=5
x + y + z = 2	x + y + z = 0	x + y + z = 3

04. If A is an $m \times n$ matrix with rank(A) = m, explain why the system [A|b] must be consistent for every right hand

side b?

05. Explain why the following homogeneous system has only trivial solutions.

$$x_1 + 2x_2 + 2x_3 = 0$$

$$2x_1 + 5x_2 + 7x_3 = 0$$

$$3x_1 + 6x_2 + 8x_3 = 0$$

06. Explain why the following homogeneous system has infinitely many solutions, and exhibit the general solution.

$$x_1 + 2x_2 + 2x_3 = 0$$

$$2x_1 + 5x_2 + 7x_3 = 0$$

$$3x_1 + 6x_2 + 6x_3 = 0$$

07. If A is the coefficient matrix for a homogeneous system consisting of four equations in eight unknowns and if there are five free variables, what is rank(A)?

- **08.** Suppose that A is the coefficient matrix for a homogeneous system of four equations in six unknowns and suppose that A has at least one non-zero row,
 - (a) Determine the fewest number of free variables that are possible.
 - (b) Determine the maximum number of free variables that are possible.
- **09.** Explain why a homogeneous system of m equations in n unknowns where m < n must always posses an infinite number of solutions.

10. Among the solutions that satisfy the set of linear equations

$$x_{1} + x_{2} + 2x_{3} + 2x_{4} + x_{5} = 1$$

$$2x_{1} + 2x_{2} + 4x_{3} + 4x_{4} + 3x_{5} = 1$$

$$2x_{1} + 2x_{2} + 4x_{3} + 4x_{4} + 2x_{5} = 2$$

$$3x_{1} + 5x_{2} + 8x_{2} + 6x_{4} + 5x_{5} = 3$$

find all those that satisfy the following two constraints:

$$(x_1 - x_2)^2 - 4x_5^2 = 0$$
$$x_3^2 - x_5^2 = 0$$

11. Consider the following system:

$$2x + 2y + 3z = 0$$
$$4x + 8y + 12z = -4$$
$$6x + 2y + \alpha z = 4$$

- (a) Determine all the values of α for which the system is consistent.
- (b) Determine the value of α for which there is a unique solution, and compute the solution for these cases.
- (c) Determine all values of lpha for which there are infinitely many different solutions, and give the general

solution for these cases.
