- 01. Prove that if two vectors are linearly dependent, one of them is a scalar multiple of the other.
- **02.** Show that the vectors $e_1 = (1, 0, 0, ..., 0), e_2 = (0, 1, 0, ..., 0), ..., e_n = (0, 0, 0, ..., 1) \in \mathbb{R}^n(\mathbb{R})$ are linearly

independent.

- **03.** If the set $S = \{\alpha_1, \alpha_2, ..., \alpha_n\}$ of vectors of the vector space V(F) is linearly independent, then show that none of these vectors can be zero vector.
- 04. Prove that every superset of linearly dependent set of vectors is linearly dependent.
- 05. Prove that every subset of linearly independent set of vectors is linearly independent.
- 06. Show that a system consisting of a single non-zero vector is always linearly independent.
- **07.** Describe geometrically the linear dependence of any two vectors u and v in the vector space \mathbb{R}^3
- **08.** Let $U = \{(a, b, c) : a = b = c\}$ is a subset in \mathbb{R}^3 . Determine whether or not U is a subspace of \mathbb{R}^3 .
- **09.** The set \mathbb{R} of all real numbers is a vector space over the field \mathbb{Q} of rational numbers. Examine whether

or not the set $\{1,\sqrt{2}\}$ of vectors in \mathbb{R} is linearly independent.

10. Express v = (2, -5, 3) in \mathbb{R}^3 as a linear combination of the vectors

$$u_1 = (1, -3, 2), u_2 = (2, -4, -1), u_3 = (1, -5, 7).$$

- 11. Determine the subspace of \mathbb{R}^3 spanned by the vectors $\alpha = (1, 2, 3), \beta = (3, 1, 0)$. Check if the vector
 - (2,1,3) is in this subspace.
- 12. Examine if the following set S is a subspace of \mathbb{R}^3 : $S = \{(x,y,z) \in \mathbb{R}^3 : x + 2y z = 0, 2x y + z = 0\}$. 13. Prove that the set of vectors $\{(1,2,2), (2,1,2), (2,2,1)\}$ is linearly independent in \mathbb{R}^3 .

- **14.** Let S be the subset of \mathbb{R}^3 defined by $S = \{(x, y, z) \in \mathbb{R}^3 : x^2 + y^2 = z^2\}$. Examine whether S is a subspace of \mathbb{R}^3 .
- **15.** In \mathbb{R}^3 , $\alpha = (4,3,5)$, $\beta = (0,1,3)$, $\gamma = (2,1,1)$. Is α a linear combination of β and γ ?
- 16. If F is a field of real numbers, prove that the vectors $(a_1, a_2), (b_1, b_2) \in \mathbb{R}^2(F)$ are linearly dependent if and only if $a_1b_2 a_2b_1 = 0$.
- 17. If α, β, γ are linearly independent vectors of V(F), where F is any subfield of the field of complex numbers, then show that the vectors $\alpha + \beta, \beta + \gamma, \gamma + \alpha$ are also linearly independent.
- **18.** In the vector space \mathbb{R}^3 , let $\alpha = (1,2,1), \beta = (3,1,5), \gamma = (3,-4,7)$. Show that the subspaces spanned by

```
S = \{\alpha, \beta\} and T = \{\alpha, \beta, \gamma\} are the same.
```

- **19.** If a vector β of a vector space V(F), is linear combination of vectors $\alpha_1, \alpha_2, ..., \alpha_n$, then show that the set of vectors $\beta, \alpha_1, \alpha_2, ..., \alpha_n$ is linearly dependent.
- **20.** Let S be a linearly independent subset of a vector space V. Suppose β is a vector which is not in the subspace spanned by S. Then show that the set obtained by adjoining β to S is linearly independent.
- **21.** Show that the set H of all points in \mathbb{R}^2 of the form (3s, 2+5s) is not a vector space.
- 22. Let $W = \text{Span}\{v_1, v_2, \dots, v_p\}$, where v_1, v_2, \dots, v_p are in a vector space V. Show that v_k is in W for $1 \le k \le p$.
- **23.** An $n \times n$ matrix A is said to be symmetric if $A^T = A$. Let S be the set of all 3×3 symmetric matrices. Show that S is a subspace of $M_{3\times 3}$, the vector space of 3×3 matrices.
- **24.** Let W be the union of the first and third quadrants in the xy-plane. That is, let $W = \left\{ \begin{bmatrix} x \\ y \end{bmatrix} : xy \ge 0 \right\}$.
 - (a) If **u** is in W and c is any scalar, is c**u** in W? Why?

- (b) Find specific vectors **u** and **v** in W such that u + v is not in W.
- 25. Let H be the set of points inside and on the unit circle in the xy-plane. That is, let

$$H = \left\{ \begin{bmatrix} x \\ y \end{bmatrix} : x^2 + y^2 \le 1 \right\}.$$
 Show that H is not a subspace of \mathbb{R}^2 .

26. In the following exercises, determine if the given set is a subspace of P_n , the set of polynomials with

degree at most n, for an appropriate value of n. Justify your answers.

- (a) All polynomials of the form $p(t) = at^2$, where a is in R.
- (b) All polynomials of the form $p(t) = a + t^2$, where a is in R.
- (c) All polynomials of degree at most 3, with integers as coefficients.
- (d) All polynomials in P_n such that p(0) = 0.
- **27.** Let H be the set of all vectors of the form $\begin{bmatrix} s \\ 3s \\ 2s \end{bmatrix}$. Find a vector **v** in \mathbb{R}^3 such that $H = \text{Span}\{v\}$. Why

does this show that H is a subspace of \mathbb{R}^3 ?

28. Let W be the set of all vectors of the form $\begin{bmatrix} 5b+2c \\ b \\ c \end{bmatrix}$, where b and c are arbitrary. Find vectors **u** and **v**

such that $W = \text{Span} \{u, v\}$. Why does this show that W is a subspace of \mathbb{R}^3 ?

29. Let W be the set of all vectors of the form
$$\begin{bmatrix} s+3t\\ s-t\\ 2s-t\\ 4t \end{bmatrix}$$
. Show that W is a subspace of \mathbb{R}^4 .
30. Let $v_1 = \begin{bmatrix} 1\\ 0\\ -1 \end{bmatrix}, v_2 = \begin{bmatrix} 2\\ 1\\ 3 \end{bmatrix}, v_3 = \begin{bmatrix} 4\\ 2\\ 6 \end{bmatrix}$ and $w = \begin{bmatrix} 3\\ 1\\ 2 \end{bmatrix}$.

Linear Algebra (Subspaces)

- (a) How many vectors are in Span $\{v_1, v_2, v_3\}$?
- (b) Is w in the subspace spanned by v_1, v_2, v_3 ? Why?

31. Let $v_1 = \begin{bmatrix} 1 \\ 0 \\ -1 \end{bmatrix}, v_2 = \begin{bmatrix} 2 \\ 1 \\ 3 \end{bmatrix}, v_3 = \begin{bmatrix} 4 \\ 2 \\ 6 \end{bmatrix}$ and $w = \begin{bmatrix} 8 \\ 4 \\ 7 \end{bmatrix}$. Is **w** in the subspace spanned by v_1, v_2, v_3 ? Why?

32. The set of all continuous real-valued functions defined on a closed interval [a, b] in R is denoted by C[a,

- b]. This set is a subspace of the vector space of all real-valued functions defined on [a, b].
- (a) What facts about continuous functions should be proved in order to demonstrate that C[a, b] is indeed a subspace as claimed?
- (b) Show that $\{f \in \mathbb{C}[a,b]: f(a) = f(b)\}\$ is a subspace of $\mathbb{C}[a,b]$.
- **33.** For fixed positive integers m and n, the set $M_{m \times n}$ of all $m \times n$ matrices is a vector space, under the usual operations of addition of matrices and multiplication by real scalars.
 - (a) Determine if the set H of all matrices of the form $\begin{bmatrix} a & b \\ 0 & d \end{bmatrix}$ is a subspace of $M_{2\times 2}$.
 - (b) Let F be a fixed 3×2 matrix, and let H be the set of all matrices A in $M_{2\times4}$ with the property that
 - FA = 0 (the zero matrix in $M_{3\times 4}$). Determine if H is a subspace of $M_{2\times 4}$.
- 34. In a vector space V, show that
 - (a) the zero vector is unique.
 - (b) the vector (-u) such that u + (-u) = 0 is unique.
 - (c) 0u = 0, for all u in V.
 - (d) c0 = 0, for all scalar c.
 - (e) (-1)u = -u, for all u in V.
 - (f) if cu = 0 for some non-zero scalar c, then u = 0.

- **35.** Let **u** and **v** be vectors in a vector space V, then show that Span{u, v} is the smallest subspace of V that contains both **u** and **v**.
- **36.** Let H and K be subspaces of a vector space V. Show that $H \cap K$ is a subspace of V. Give an example

in \mathbb{R}^2 to show that the union of two subspaces is not, in general, a subspace.

37. Given subspaces H and K of a vector space V, the **sum** of H and K, written as H + K, is the set of all vectors in V that can be written as the sum of two vectors, one in H and the other in K; that is,

 $H + K = \{w : w = u + v \text{ for some } u \text{ in } H \text{ and some } v \text{ in } K\}$

(a) Show that H + K is a subspace of V.

(b) Show that H is a subspace of H + K and K is a subspace of H + K.

38. Suppose u_1, u_2, \dots, u_p and v_1, v_2, \dots, v_q are vectors in a vector space V, and let $H = \text{Span}\{u_1, u_2, \dots, u_p\}$

and $K = \operatorname{Span}\left\{v_1, v_2, \dots, v_q\right\}$. Show that $H + K = \operatorname{Span}\left\{u_1, u_2, \dots, u_p, v_1, v_2, \dots, v_q\right\}$.