$$C = 2L + 4K$$
 সাপেকে $Q = 8L^{\frac{1}{4}}K^{\frac{1}{2}} = 64$

(i) Find equilibrium income (\overline{Y}) , consumption (\overline{C}) and tax revenue (\overline{T}) from the following simple national income model :
তলত দিয়া সৰল জাতীয় আয়ৰ আৰ্থিৰ পৰা ভাৰসাম্য

তলত দিয়া সৰল জাতীয় আয়ৰ আৰ্হিৰ পৰা ভাৰসাম্য আয় (\overline{Y}) , ভোগ ব্যয় (\overline{C}) আৰু কৰ ৰাজহ (\overline{T}) নিৰ্ণয় কৰা :

$$Y = C + I_0 + G_0$$

$$C = 200 + 0.8 (Y - T)$$

$$T = 50 + 0.3 Y$$

$$I_0 = 500$$

$$G_0 = 400$$

(j) Analyze the following market model for stability:

তলত দিয়া বজাৰ আৰ্হিটোৰ সুস্থিৰতা বিশ্লেষণ কৰা :

$$Q_d = 14 - 3P$$

$$Q_s = -10 + 2P$$

$$\frac{dp}{dt} = 4(Q_d - Q_s)$$

2022

ECONOMICS

Paper: ECO-HC-2026

(Mathematical Methods in Economics—II)

(Honours Core)

Full Marks: 80

Time: 3 hours

The figures in the margin indicate full marks for the questions

Answer the following as directed (any ten): $1\times10=10$

তলত দিয়াসমূহৰ নিৰ্দেশ অনুযায়ী উত্তৰ দিয়া (যি কোনো দহটা):

- (a) Write a unit matrix of order 3×3.
 3×3 ক্রমৰ এটা একক মৌলকক্ষ লিখা।
- (b) If the two rows (or columns) of a determinant are identical, the value of the determinant will be ____ (zero/one).

 (Fill in the blank)

যাদ এটা নিৰ্ধাৰকৰ দুটা শাৰী (বা স্তম্ভ) একে হয়, তেন্তে নিৰ্ধাৰকটোৰ মান হ'ব ____ (শূন্য/এক)।

(খালী ঠাই পূৰণ কৰা)

(Turn Over)

(c) All differentiable functions continuous, but not all continuous functions are differentiable.

(Write True or False)

সকলো অৱকলনীয় ফলনেই অবিচ্ছিন্ন হয়, কিন্তু সকলো অবিচ্ছিন্ন ফলনেই অৱকলনীয় নহয়।

(সত্য নে অসত্য লিখা)

- (d) Is (AB)' = B'A' correct? (AB)' = B'A' শুদ্ধ হয়নে ?
- (e) Every homogeneous function homothetic. but all homothetic functions may not be homogeneous.

(Write True or False)

প্রত্যেক সদৃশ ফলনেই সমৰূপ হয়, কিন্তু সকলো সমৰূপ ফলনেই সদৃশ ফলন নহ'বও পাৰে।

(সত্য নে অসত্য লিখা)

- Define idempotent matrix. বর্গসম মৌলকক্ষব সংজ্ঞা দিয়া।
- Having an objective function with two explanatory variables and one equality constraint, the order of the second-order bordered Hessian determinant will be

এটা অভিলক্ষ্য ফলনসহ দুটা স্বতন্ত্ৰ চলক আৰু সমান প্ৰতিবন্ধক থকা সীমান্থিত 'হেছিয়ান' নিৰ্ধাৰকৰ দ্বিতীয় ক্ৰম হ'ব

- (i) 2×2
- (ii) 3×3
- (iii) 4×4
- (iv) 2×3

Choose the correct answer)

(শুদ্ধ উত্তৰটো বাছি উলিওবা)

- What is the rank of a null matrix? এটা ৰিক্ত মৌলকক্ষৰ অনুস্থিতি কি হ'ব?
- Is $x^2 + y^2 = 1$ an implicit function? $x^2 + y^2 = 1$ এটা অন্তর্নিহিত ফলন হয়নে?
- If I is a unit matrix, then 5I will be যদি I এটা একক মৌলকক্ষ হয়, তেন্তে 51 হ'ব
 - (i) a triangular matrix / এটা ত্রিভূজীয় মৌলকক্ষ
 - (ii) a unit matrix / এটা একক মৌলকক্ষ
 - (iii) a scalar matrix / এটা অদিশ মৌলকক্ষ
 - (iv) a vector / এটা সদিশ বাশি (Choose the correct answer)

(শুদ্ধ উত্তৰটো বাছি উলিওৱা)

(Continued)

22A/1098

22A/1098

(Turn Over)

- (k) What is the trace of the matrix $\begin{bmatrix} 5 & 2 \\ 1 & 3 \end{bmatrix}$? ি 5 2 1 3 মৌলকক্ষটোৰ অনুৰেখ কি হ'ব ?
- The solution of a differential equation of first-order consists of প্ৰথম-ক্ৰমৰ এটা অৱকলনীয় সমীকৰণৰ সমাধানত থাকে (t) complementary solution / পৰিপ্ৰক সমাধান
 - (ii) particular solution / বিশেষ সমাধান
 - (iii) Both (i) and (u) / (i) আৰু (ii) দুযোটা
 - (w) trial solution / পৰীক্ষণ সমাধান (Choose the correct answer) (শুদ্ধ উত্তৰটো বাছি উলিওৱা)
- (m) Define saddle point. পৰ্যাণ বিন্দৰ সংজ্ঞা দিয়া।
- Difference equation is used in discrete/ continuous time analysis. বিৰত/অবিৰত সময় বিশ্লেষণত ভেদ সমীকৰণ ব্যৱহৃত (Choose the correct option) श्य । (শুদ্ধ বিকল্পটো বাছি উলিওৱা)
- Cobweb model is very appropriate for মকৰাজাল আৰ্হিটো বেছি অৰ্থবহ হয়
 - (i) agricultural products কৃষিজাত দ্ৰব্যৰ বাবে

- (ii) industrial products উদ্যোগিক দ্ৰব্যৰ বাবে
- (wi) Both (t) and (ii) (i) আৰু (ii) দুয়োটা
- (w) service সেৱা সামগ্ৰীৰ বাবে

(Choose the correct answer) (শুদ্ধ উত্তৰটো বাছি উলিওৱা)

- 2. Answer the following questions (any five): $2 \times 5 = 10$ তলত দিয়া প্ৰশ্নসমূহৰ উত্তৰ দিয়া (যি কোনো পাঁচটা) :
 - Give an example of a diagonal matrix. এটা বিকৰ্ণ মৌলকক্ষৰ উদাহৰণ দিয়া।
 - Prove that for any scalar λ $\lambda(A+B) = \lambda A + \lambda B$ যি কোনো অদিশ ৰাশি মৰ বাবে প্ৰমাণ কৰা যে $\lambda(A+B) = \lambda A + \lambda B$
 - Give an economic interpretation of Lagrange multiplier. লগ্ৰাঞ্জ গুণকৰ অৰ্থনৈতিক ব্যাখ্যা আগবঢ়োৱা।
 - Define vector space with example. উদাহৰণসহ সদিশ স্থলৰ সংজ্ঞা দিয়া।

(Continued)

22A/1098

(Turn Over)

(e) Find the norm of the following matrix : তলত দিয়া মৌলকক্ষটোৰ মানক উলিওৱা :

$$A = \begin{bmatrix} 3 & 2 & 6 \\ 6 & 4 & 12 \\ 5 & 3 & 10 \end{bmatrix}$$

- (f) Define intertemporal equilibrium.
 আন্তঃসামিথক ভাৰসাম্যৰ সংজ্ঞা দিয়া।
- (g) Find the rank of the following matrix :
 তলৰ মৌলকক্ষটোৰ অনুস্থিতি নিৰ্ণয় কৰা :

$$A = \begin{bmatrix} -5 & -3 \\ 15 & 9 \end{bmatrix}$$

(h) Define homothetic function with example.

উদাহৰণসহ সমৰূপ ফলনৰ সংজ্ঞা দিয়া।

3. Answer the following questions (any *four*): $5\times4=20$

তলত দিয়া প্ৰশ্নসমূহৰ উত্তৰ দিয়া (যি কোনো চাৰিটা) :

(a) Prove that প্ৰমাণ কৰা যে

 $N(AB) \leq N(A) N(B)$

(b) Evaluate the following determinant : তলত দিয়া নিৰ্ধাৰকটোৰ মান নিৰ্ণয় কৰা :

(c) Find the extreme value of the following function:

তলত দিয়া ফলনটোৰ চৰম মান নিৰ্ণয় কৰা:

$$Z = x^2 + xy + 2y^2 + 3$$

(d) Find $A^2 - 5A + 7I$ from the following matrix:

তলত দিয়া মৌলকক্ষৰ পৰা $A^2 - 5A + 7I$ নিৰ্ণয় কৰা:

$$A = \begin{bmatrix} 3 & 2 \\ 5 & -1 \end{bmatrix}$$

(e) Determine whether the following function is homogeneous. If so, of what degree?

তলত দিয়া ফলনটো সদৃশ ফলন হয় নে নহয়, নির্ণয় করা। যদি হয়, তেন্তে কিমান মাত্রাৰ ?

$$f(x, y, w) = \frac{xy^2}{w} + 2xw$$

(f) Prove that if a function f(x) is differentiable at a point x = c, then f(x) is continuous at x = c.
প্রমাণ কৰা যে যদি এটা ফলন f(x), x = c বিন্দৃত অৱকলনীয় হয, তেন্তে ফলনটো x = c বিন্দৃত অবিচ্ছিন্নও হ'ব।

- (g) Given X' = [x₁ x₂ x₃], write out the column vector X and find XX'.
 যদি X' = [x₁ x₂ x₃] দিয়া থাকে, তেন্তে সদিশ জন্ত X কি হ'ব, লিখা আৰু XX' নির্ণয় করা।
- (h) Prove that the Cobb-Douglas production function $Q = AK^{\alpha}L^{\beta}$ is a linearly homogeneous production function, if $\alpha + \beta = 1$.

 প্রমাণ কৰা যে যদি $\alpha + \beta = 1$ হয, তেন্তে ক'ব-ডগ্লাচৰ উৎপাদন ফলন $Q = AK^{\alpha}L^{\beta}$ এটা সৰলবৈথিক মাত্রাৰ সদৃশ উৎপাদন ফলন হয়।
- **4.** Answer the following questions (any four) . $10 \times 4 = 40$ তলত দিয়া প্ৰশ্নসমূহৰ উত্তৰ দিয়া (যি কোনো চাৰিটা) :
 - (a) Solve the following simple national income model using the method of (1) Cramer's rule and (11) matrix inversion: 5+5=10

তলত দিয়া সৰল জাতীয় আয়ৰ আৰ্হিটো (i) ক্ৰেমাৰৰ পদ্ধতি আৰু (ii) প্ৰতিলোমীয় মৌলকক্ষৰ পদ্ধতিৰে সমাধান কৰা:

$$Y = C + I_0 + G_0$$

 $C = a + bY$ $(a > 0, 0 < b < 1)$

(b) A price discriminating firm has the following average revenue functions:

$$P_1 = 63 - 4Q_1$$

$$P_2 = 105 - 5Q_2$$

$$P_3 = 75 - 6Q_3$$

If total cost function C = 20 + 15Q, then find the equilibrium outputs and equilibrium prices. 5+5=10

দৰ বিভেদীকৰণ কৰা উৎপাদন প্ৰতিষ্ঠান এটাৰ গড আয় ফলনবোৰ তলত দিয়া হৈছে

$$P_1 = 63 - 4Q_1$$

$$P_2 = 105 - 5Q_2$$

$$P_3 = 75 - 6Q_3$$

মুঠ ব্যয় ফলনটো যদি C = 20 + 15Q হয়, তেন্তে ভাৰসাম্য উৎপাদনৰ পৰিমাণ আৰু ভাৰসাম্য দৰ উলিওৱা।

(c) A monopolist produces his product in two different plants and his total cost (TC) function of the two plants are given by

$$TC_1 = 10 - 2Q_1 + Q_1^2$$

 $TC_2 = 15 - 6Q_2 + 2Q_2^2$

If the average revenue (AR) function is given by AR = 50 - 2Q, then find—

- (i) profit maximizing outputs;
- (ii) maximum profit.

5+5=10

এজন একটেটীয়া বিক্রেতাই দুটা ভিন্ন প্রকল্পত উৎপাদন কৰা সামগ্রীৰ ব্যয় (TC) ফলন হ'ল

$$TC_1 = 10 - 2Q_1 + Q_1^2$$

$$TC_2 = 15 - 6Q_2 + 2Q_2^2$$

যদি গড় আয় AR = 50 - 2Q হয়, তেন্তে—

- (i) সৰ্বোচ্চ লাভ অৰ্জনকাৰী উৎপাদনৰ পৰিমাণসমূহ;
- (ii) সৰ্বোচ্চ লাভ নিৰ্ণয় কৰা।
- (d) For each F(x, y) = 0 use the implicit function rule to find $\frac{dy}{dx}$: 5+5=10

অন্তৰ্নিহিত ফলনৰ নিয়ম প্ৰয়োগ কৰি তলত দিয়া প্ৰতিটো F(x, y) = 0 ফলনৰ পৰা $\frac{dy}{dx}$ নিৰ্ণয় কৰা :

(1)
$$F(x, y) = y - 6x + 7 = 0$$

(ii)
$$F(x, y) = 3x^2 + 2xy + 4y^3 = 0$$

(e) Solve the following differential equation:

তলত দিয়া অৱকলনীয় সমীকৰণটো সমাধান কৰা:

$$\frac{dy}{dt} + 4y = 12, \ y(0) = 2$$

(f) Solve the following first-order difference equation:

তলত দিয়া প্ৰথম-ক্ৰমৰ ভেদ সমীকৰণটো সমাধান কৰা :

$$y_{t+1} - 5y_t = 1$$
, $y(0) = \frac{7}{4}$

g) The consumer's utility function and budget constraint are given as follows:

U = 18xy + 9y subject to 6x + 3y = 15

Find out optimum purchase of x and y which will maximize the utility of the consumer.

উপভোক্তাৰ উপযোগিতা ফলন আৰু বাজেট প্ৰতিবন্ধক ক্ৰমান্বযে তলত দিয়া আছে:

U = 18xy + 9y সাপেক্ষে 6x + 3y = 15 উপভোক্তাৰ উপযোগিতা সৰ্বাধিক হোৱাৰ বাবে x আৰু y সামগ্ৰীৰ ক্ৰয় কিমান হ'ব লাগিব, নিৰ্ণয় কৰা।

(h) A producer's cost function (C) and production function (Q) are given below. Find the optimum combination of inputs [labour (L) and capital (K)] in order to minimize the cost of production

$$C = 2L + 4K$$
 subject to $Q = 8L^{\frac{1}{4}}K^{\frac{1}{2}} = 64$