2024

MATHEMATICS

Full Marks: 100
 Pass Marks : 30

Time : Three hours
The figures in the margin indicate full marks for the questions.
Q. No. 1 ($a-j$) carries 1 mark each $1 \times 10=10$
Q. Nos. 2-13 carry 4 marks each $4 \times 12=48$
Q. Nos. 14-20 carry 6 marks each. $6 \times 7=42$

$$
\text { Total }=100
$$

Answer the following questions

(a) State true or false :

Relation R in the set of population A of a town at a particular time given by $R=\{(x, y): x$ is husband of $y\}$ is reflexive but not symmetric.

(b) Write the condition of coplanarity of the lines $\vec{r}_{1}=\vec{a}_{1}+i \vec{a}_{2}$ and $\vec{r}_{2}=\ddot{b}_{1}+\mu \vec{b}_{2}$.
$\vec{r}_{1}=\vec{a}_{1}+i \vec{a}_{2}$ आবo $\vec{r}_{2}=\vec{b}_{1}+\mu \vec{b}_{2}$ বেখাদ্দে একে সমতলযুক্ত ,োরার চর্ততো লিখা।
(c) Given $s=\{1,2,3,4\}$. Find f^{-1} (if exist) of the function $f: s \rightarrow s$ defined by $f=\{(1,4),(2,3),(3,2),(4,1)\}$,

দিয়া আছে $s=\{1,2,3,4\} \mid f: s \rightarrow s$ /ল⿵ সং区্ঞারদ্ধ

(d) If $A=\left[\begin{array}{ll}1 & 2 \\ 4 & 2\end{array}\right]$, then find $\left|2^{n} A\right|$, for some $n \in \mathbb{N}$.

यमि $A=\left[\begin{array}{ll}1 & 2 \\ 4 & 2\end{array}\right]$, जেন্তে যিকোনো $n \in$ ব বারে $\left|2^{n} A\right|$ উলিঙ্রা।
(e) Find the second order derivative of the function $\log x$ with respect to x.

(f) Find the maximum value, if any, of the function f given by $f(x)=x^{2}$ on $[-2,1]$.

(g) Let $\vec{a}=\hat{i}+2 \hat{j}$ and $\vec{b}=2 \hat{i}+\hat{j}$. Are the vectors \vec{a} and \vec{b} equal? Explain.
 কबা।
(h) Find the distance between the two planes $2 x+3 y+4 z=4$ and $4 x+6 y+8 z=12$.
$2 x+3 y+4 z=4$ जाবঃ $4 x+6 y+8 z=12$ সমতল দू'খনব गাজब দূবढ़ উলিঙরা।
(i) If A is a non-singular square matrix of order 3×3 such that $|\operatorname{adj} A|=36$, find $|A|$.

यদিহে A এটা 3×3 मাত্রাব তক্木ীয়মান বর্গ মৌলকক্ক হয় যাতে $|\operatorname{adj} A|=36$, তে, $|A|$ ब মান উলিঁঔরা।
(j) Differentiate $\sin ^{2} x$ w.r.t. $\cos ^{2} x$. $\cos ^{2} x$ সাপপক্নে $\sin ^{2} x$ ব অরকলজজ উলিওরা।
2. Draw the graph of inverse trigonometric function $f(x)=\cos ^{1} x$ Also mention its range and domain.

$\mathrm{Or} /$ आथना

Find the principal value of $\cos ^{-1}(-1 / 2)$. Also evaluate $\tan ^{-1}(\sqrt{3})-\cot ^{-1}(-\sqrt{3})$.

3. Answer (i) and (ii) or (a) and (b):

উত্ত্ব কবা (i) আবে (ii) অথবা (a) আবু (b)ঃ
(i) If $f(x)=\frac{4 x+3}{6 x-4}, x \neq 2 / 3$, then show that $(f \circ f)(x)=x$ for all $x \neq 2 / 3$.

यमि $f(x)=\frac{4 x+3}{6 x-4}, x \neq 2 / 3$, তেন্তে দেখুওরা যে সকলোে $x \neq 2 / 3$ ব বারে $(f \circ f)(x)=x$.
(ii) Find the slope of the tangent to the curve $y=3 x^{2}-4 x$ at $x=4$.
$y=3 x^{2}-4 x$ বক্রব $x=4$ বিন্দুত টনা স্পশ্পকब প্ররণতা উলিঙরা।

Or/ অথবা

(a) Give examples of two functions $f: \mathbb{N} \rightarrow$ and $g: \sim$ such that $g \circ f$ is injective but g is not injective.
দুটা ফলन $f: N \rightarrow \mathbb{K}$ आ<< $g: \mathbb{Z} \rightarrow \mathbb{Z}$ ব উদাহবণ দিয়া যাতে $g \circ f$ जাচ্ছদদক, কিন্তু g আচ্ছ্ছদক নহয়।
(b) Find the approximate change in the volume V of a cube of side x meters caused by increasing the side by 2%.
 কबा।
4. Find the points of discontinuity of the greatest integer function defined by $f(x)=[x]$, where $[x]$ denotes the greatest integer less than or equal to x.
বৃহত্তম অখঙ্ট ফলননব সংজ্ঞা এনেদরে দিয়া হয় $f(x)=[x]$, বঁত $[x] এ x$ তকৈ স< বা সমান বৃহত্তম অখণ্ড সংখ্যা বুজায। ফলনটোব বিছ্নিতাব সকলো বিন্দু উলিওরা।

Or/ অথবা

Find the value(s) of k so that the function f is continuous at $x=\pi / 2$, where $f(x)=\left\{\begin{array}{cc}\frac{k \cos x}{\pi-2 x}, & x \neq \pi / 2 \\ 3, & x=\pi / 2\end{array}\right.$
$x=\pi / 2$ বিন্দুত f ফন্লন অবিছিন্ন হ'লে k ব মান উলিওরা য'ত

$$
f(x)=\left\{\begin{array}{cc}
\frac{k \cos x}{\pi-2 x}, & x \neq \pi / 2 \\
3, & x=\pi / 2
\end{array}\right.
$$

5. Evaluate :

মান নির্ণয় কবা:
$\int \frac{x^{2}+1}{x^{2}-5 x+6} d x$

Or/ অথবা

$\int_{0}^{\pi} \frac{x d x}{1+\sin x}$
6. Find the area lying between the curve $y^{\prime}=4 x$ and line $y \quad 2 x$

$\mathrm{Or} /$ অথবা

The area between $x=y^{2}$ and $x=4$ is divided into two equal parts by the line $x=a$. Find the value of a.
 দুটों সমান তাংশত বিভক্ত কবে, তেতিয়া হ'লে a ব মান নির্ণয় ক:বা।
7. Write the order and degree (if defined) of the differential equation

$$
\left(\frac{d^{2} y}{d x^{2}}\right)^{5}+\left(\frac{d y}{d x}\right)^{2}+\cos \left(\frac{d y}{d x}\right)+1=0 . \text { Verify that } y=\sqrt{1+x^{2}} \text { is a }
$$

solution of the differential equation $\frac{d y}{d x}=\frac{x y}{1+x^{2}} . \quad 1+1+2=4$

$$
\left(\frac{d^{2} y}{d x^{2}}\right)^{5}+\left(\frac{d y}{d x}\right)^{2}+\cos \left(\frac{d y}{d x}\right)+1=0 \text { অরকলল সমীক.বণढোব ক্রু্ম আবু মাত্রা }
$$

(यদি তাছে) লিখা। প্রত্যায়ন ক.बা যে $y=\sqrt{1+x^{2}}, \frac{d y}{d x}=\frac{x y}{1+x^{2}}$ অরক.ল সনীক.বণাতঢাब এটা সমাধান।

Or/ অथবা

Find a particular solution of the following differential equation satisfying the given condition:
$x\left(x^{2}-1\right) \frac{d y}{d x}=1 ; y=0$ when $x=2$
তলত দিয়া অরকলল সমীকবণটোব প্রদত্চর্ত সিদ্ধ কবাকে একোটা বিশেেব সমাধাল উলিজনা :

$$
x\left(x^{2}-1\right) \frac{d y}{d x}=1 ; y=0 \text { বেতিয়া } x=2
$$

8. Show that the family of curves for which the slope of the tangent at any point (x, y) on it is $\frac{x^{2}+y^{2}}{2 x y}$, is given by $\dot{x}^{2}-y^{2}=c x$, where c is an arbitrary constant.

দেখুও্রা বে এটা বঞ্র পবিয়ালব যিকেনোো বিন্দু (x, y) ত স্পর্শকব প্ররণতা $\frac{x^{2}+y^{2}}{2 x y}$ হ'লে, ইয়াব সমীকবণঢো হ'ব $x^{2}-y^{2}=c x$, য’ত c এটাं যাদৃচ্ছিক প্রুরক।

Or / অথবা

Solve the differential equation $\left(x+3 y^{2}\right) \frac{d y}{d x}=y \quad(y>0)$
$\left(x+3 y^{2}\right) \frac{d y}{d x}=y \quad(y>0)$ जরনকল সমীকবণটে| সমাধধান কবা।
9. Let $\vec{a}=\hat{i}+4 \hat{j}+2 \hat{k}, \vec{b}=3 \hat{i}-2 \hat{j}+7 \hat{k}$ and $\vec{c}=2 \hat{i}-\hat{j}+4 \hat{k}$. Find a vector \vec{d} which is perpendicular to both \vec{a} and \vec{b} and $\vec{c}, \vec{d}=15$.

ধবা হ'ল $\vec{a}=\hat{i}+4 \hat{j}+2 \hat{k}, \vec{b}=3 \hat{i}-2 \hat{j}+7 \hat{k} \quad$ आব0 $\vec{c}=2 \hat{i}-\hat{j}+4 \hat{k}$ । \vec{d} 心েন্ট্বাো \vec{a} आदু \vec{b} উভয়বে ৩পবত লম্ব आাবo $\vec{c} \cdot \vec{d}=15$ ₹ढলে, \vec{d} উলिওরা।
10. Find the vector and the Cartesian equations of the lines that passes through the origin and $(5,-2,3)$.

মূলবিन্দু আাবু $(5,-2,3)$ বিन্দুব गাজ্রেবে যোরা বেখাব ভেক্টব আাকে কার্টেজীয় সমীকবণ নিণর্র কबा।

Or/ অথবা

Find the vector and Cartesian equations of the planes that pass through the point $(1,0,-2)$ and the normal to the plane is $\hat{i}+\hat{j}-\hat{k}$.

সমতলব ভেই্টব আবে কাঢ্টেীয় সমীকবণ উলিওরা যিয়ে $(1,0,-2)$ বিन्দूब মাজেবে যায় আবু যাব ঙপবত $\hat{i}+\hat{j}-\hat{k}$ ভেট্টব লম্বভরে থাকে।
11. Find the values of k so that the lines
$\frac{1-x}{3}=\frac{7 y-14}{2 k}=\frac{z-3}{2}$ and $\frac{7-7 x}{3 k}=\frac{y-5}{1}=\frac{6-z}{3}$ are at right angles.
4
k ব মান উলিওরা যাতে $\frac{1-x}{3}=\frac{7 y-14}{2 k}=\frac{z-3}{2}$ बেখাডাল
$\frac{7-7 x}{3 k}=\frac{y-5}{1}=\frac{6-z}{3}$ बেখাডালब লম্ব হয়।
12. An unbiased die is thrown twice Let the event E be 'even number on the first throw' and F the event 'even number on the second throw'. Check the independence of the events E and F.

13. In answering a question on a multiple choice test, a student either knows the answer or guesses. Let $\frac{3}{4}$ be the probability that he knows the answer and $\frac{1}{4}$ be the probability that he guesses. Assuming that a student who guesses at the answer will be correct with probability $\frac{1}{4}$. What is the probability that the student knows the answer given that he answered it correctly?
 নির্ভব কবে। ধবা হ'ল ছত্রজনে উত্তটটো জনাব সল্ভারিতা $\frac{3}{4}$ आকে অনুমান সাপেক্কে লিখাব সভারিত। $\frac{1}{4}$ । অनুমান সাপেক্কে লিখা উত্তব শুদ্ধ হেোব সম্ভারিতা $\frac{1}{4}$ বুলি ধবিলে যদি ছত্রজনে উब্ব্টেো শুদ্ধকে লিতে, তেত্তে তেওঁ যে উত্তবটেো জানে তাধ সল্ভারিতা কিমান ?

Or/ অথবা

A coin is biased so that the head is 3 times as likely to occur as tail. If the coin is tossed twice, find the probability distribution of number of tails.

এটা মুদ্রা জ্রঁটীপূর্ণ গাঠনিব বাবে টৈছ কবিলে পুচ্ছতকৈ 3 গুণে বেছিকে মুণ্ড প্রাপ্ত হয়। প্রাপ্ত পুচ্ছ সংখ্যাব সভ্ভারিতা বণ্টন উলিওরা।

14. Answer (i) and (ii) or (a) and (b) :

উज्ब क.ना (i) आयु (ii) অथना (a) आयन (b) :
(i) If A and B are symmetric matrices of the same order, then prove that $A B$ is symmetric if and only if $A B=B A$.
 यदि आदु यদिएহ $A B=B A$.
(ii) Construct a 2×1 matrix A whose elements are given by $a_{i j}=2 i-j$. Write A^{\prime}.

$$
1+1=2
$$

Or/ অথবা

(a) Given $3\left[\begin{array}{cc}x & y \\ z & w\end{array}\right]=\left[\begin{array}{cc}x & 6 \\ -1 & 2 w\end{array}\right]+\left[\begin{array}{cc}4 & x+y \\ z+w & 3\end{array}\right]$

Find the values of x, y, z and w.
দিয়া আছে
$3\left[\begin{array}{cc}x & y \\ z & w\end{array}\right]=\left[\begin{array}{cc}x & 6 \\ -1 & 2 w\end{array}\right]+\left[\begin{array}{cc}4 & x+y \\ z+w & 3\end{array}\right]$
x, y, z आবে w ব মান নিণ্ণয় কবা।
(b) Give example of 2×2 matrices A and B such that $A B \neq B A$.
2×2 মেট্রিক্স A আারু B ব উদাহবণ দিয়া যাতে $A B \neq B A$ ।
15. If a, b, c are positive and whequal, show that the value of the determinant

$$
\Delta=\left|\begin{array}{lll}
a & b & c \\
b & c & a \\
c & a & b
\end{array}\right| \text { is negative. }
$$

a, b, c ধनाज़ाক আবু ওাসমান হ'লে, দেখুఆরা যে নির্ণায়ক

$$
\Delta=\left|\begin{array}{lll}
a & b & c \\
b & c & a \\
c & a & b
\end{array}\right| \quad \text { ঋब|णाक। }
$$

Or / অথবা

For the matrix $A=\left[\begin{array}{ll}3 & 2 \\ 1 & 1\end{array}\right]$, find the numbers a and b such that
$A^{2}+a A+b I=0$ where I and 0 respectively are identity matrix and zero matrix of order 2×2. Also find A^{-1}.
$4+2=6$
$A=\left[\begin{array}{ll}3 & 2 \\ 1 & 1\end{array}\right]$ মৌলকক্ষটোব বাবে এনে দুটা a আবু b উলিওরা যাতে $A^{2}+a A+b I=0$ য'ত I আব্ 0 ऊ্রহ্মে 2×2 মাত্রাব অভেদ মৌলকক্ষ আবু শূন্য মৌলকক্ষ। লগতে A^{-1} উলিওরা।
16. Answer (i) and (ii) or (a) and (b):

উত্তব কবা (i) আदক (ii) অথবা (a) आ<ক (b):
(i) Find $\frac{d y}{d x}$, where
$\sin ^{2} y+\cos x y=k, k$ is an arbitrary constant.
$\frac{d y}{d x}$ উলিওরা, য'ত $\sin ^{2} y+\cos x y=k, k$ এটা যাদৃচ্ছ্রিক প্রেরক।
(ii) If $y=\cos ^{-1} x$, find $\frac{d^{2} y}{d x^{2}}$ in terms of y alone.

यमि $y=\cos ^{-1} x$, অকল y ব মাধ্যমত $\frac{d^{2} y}{d x^{2}}$ উनिওরা।

Or/ অথবা

Find $\frac{d y}{d x}$ ($\frac{d y}{d x}$ উলিওরা):
(a) $(\cos x)^{y}=(\cos y)^{x}$
(b) $x=a(\theta+\sin \theta)$

$$
y=a(1-\cos \theta)
$$

17. Find the values of x for which $y=x^{2}(x-2)^{2}$ is an increasing
function. x ব কি মানব কাবণে $y=x^{2}(x-2)^{2}$ ফলनনটোে এটা বর্ধমান ফল্লন হয় উলিওরা।

Or 1 घणना

(1) Show that the functon given by $f(x)=\sin x$ is strictly decteasing in $(\pi / 2, \pi)$

(ii) A balloon, which always remains spherical on inflation, is being inflated by pumping in 900 cubic centimetres of gas per second. Find the rate at which the radius of the balloon increases when the radius is 15 cm .

 ব্যাসার্ধ 15 जिমি.
18. Evaluate: (any two)

মান নির্ণয় কবা : (যিকোনো দুটা)
(i) $\int \frac{\sqrt{\tan x}}{\sin x \cos x} d x$
(ii) $\int_{0}^{1} x e^{x^{2}} d x$
(iii) $\int x(\log x)^{2} d x$
19. Find the area of the triangle with vertices $A(1,1,2), B(2,3,5)$ and $C(1,5,5)$.
এটা ত্রিভুজব শীর্ষবিন্দুব স্থানাংক $A(1,1,2), B(2,3,5)$ আবু $C(1,5,5)$ হ'লে ত্রিভুজটোব কালি উলিওরা।

Or/ ऊथना

(i) For the given vectors $\vec{a}=2 \hat{i}-\hat{j}+2 \hat{k}$ and $\vec{b}=-\dot{i}+\dot{j}-\hat{k}$, finc the unit vector in the direction of the vector $\vec{a}+\vec{b}$. 2
$\vec{a}=2 \hat{i}-\hat{j}+2 \hat{k}$ आব: $\vec{b}=-\hat{i}+\hat{j}-\hat{k}$ ভেক্টব দুটা দিয়া आएছ। $\vec{a}+\vec{b}$ ভ্টেবঢঢান দিশত একক ভেক্টবাটো উলিওরা।
(ii) Show that the points $A(-2,3,5), B(1,2,3)$ and $C(7,0,-1)$ are collinear.

দেখুওরা যে $A(-2,3,5), \quad B(1,2,3)$ আব• $C(7,0,-1)$ বিन्দूকেইট। একেবেখীয়।
20. Solve graphically the following linear programming problems: 6 লৈখিক নিয়মেবে তলব বৈখিক প্রত্রেমিং সমন্যাটোব সমাধান কবা :
Maximize and minimize $Z=x+2 y$
subject to

$$
\begin{aligned}
& x+2 y \geq 100 \\
& 2 x-y \leq 0 \\
& 2 x+y \leq 200 \\
& x, y \geq 0
\end{aligned}
$$

$Z=x+2 y$ ব সর্বোচ্চ আবে সর্বনিম্ন মান উলিঙরা য’ত

$$
\begin{aligned}
& x+2 y \geq 100 \\
& 2 x-y \leq 0 \\
& 2 x+y \leq 200 \\
& x, y \geq 0
\end{aligned}
$$

Or / অथना

A merchant plans to sell two types of personal computers - a desktop model and a portable model that will cost Rs. 25,000 and Rs. 40,000 respectively. He estimates that the total monthly demand of computers will not exceed 250 units. Determine the number of units of each type of computers which the merchant should stock to get maximum profit if he does not want to invest more than Rs. 70 lakhs and if his profit on the desktop model is Rs. 4,500 and on portable model is Rs. 5,000.

এজন ব্যরসায়ীয়ে নেজত बখা আব০ পবিবহণয়াগ্য দুই ধবণব ব্যক্তিগত কক্ছিউটাব বনোরাব পबিকল্পনা করে যাব প্রতিরটটাব দাম ত্রন্তম 25,000 টকা আব্ 40,000 টকা ততভঁ গ্রাবঙ্ভিক হ্চিাপ কবি দেখিলে যে এনে ধবণব কস্পিউটাবব ঢাহিদা প্রতিমাহ. 250 টকাতকৈ অধিক নহয়। যদি ব্যরসায়ীজনে 70 লাখ টকাতকৈৈ অধিক বিनिয়োগ কবিবনৈল निবিচাবে आবু মেজত বখা আব০ পबিবহণযোগ্য দুয়োবিধব প্রতিটোতে লাভব পবিমাণ ত্রুমে 4,500 টকা आব。 5,000 টক হয়, তেন্তে প্রতিবিধব কিমান‘কে কন্পিউঢাৰ বনালেল লাভব পবিমাণ সর্র্বোচ্চ হৃব ?

